
www.manaraa.com

BCS LEVEL 4 CERTIFICATE IN IT

SOFTWARE DEVELOPMENT

This is a United Kingdom government regulated qualification
which is administered and approved by one or more of the

following: Ofqual, Qualifications Wales, CCEA Regulation or SQA.

SYLLABUS

September 2021 v4.0

www.manaraa.com

CONTENTS

Introduction

Qualification Suitability and Overview

SFIA Levels

Learning Outcomes

Syllabus

Examination Format

Question Weighting

Recommended Reading

Using BCS Books

3.

4.

4.

6.

7.

13.

13.

14.

16.

www.manaraa.com

Introduction
Encompassing three core modules, the Level 4 Certificate in IT explores the fundamentals of computer and
network technology, processor architecture, operating and information systems, software development, and
networks.

Candidates will gain a solid foundation upon which they will be able to build a career pathway into
information technology. Career opportunities include entry-level positions in the rapidly growing fields of
computer science and software development.

Upon successful completion of this qualification, candidates will be equipped with the knowledge and
understanding to enable them to progress on to a broad range of further development areas such as Big
Data management, software engineering and web application development. Candidates will be prepared to
progress onto the BCS Level 5 Diploma in IT, with the ability to customise their learning pathways based on
their areas of special interest.

3

Software Development Core Module

The Software Development module is one of three core modules that forms part of the Level 4 Certificate
in IT – the first stage within the BCS three-stage Higher Education Qualification programme. Candidates will
develop an understanding of fundamental concepts of the programming process, consider issues related
to the various phases of software development, and will be introduced to different types of programming
concepts.

www.manaraa.com

Total Qualification Time
(Certificate)

Guided Learning Hours
(Module)

Assessment Time
(Exam)

734 hours 200 hours 2 hours

4

Qualification Suitability and
Overview
There are no specific entrance requirements for the Certificate in IT. Candidates can study for this certificate
by attending a training course provided by a BCS accredited Training Provider or through self-study,
although it is strongly recommended that all candidates register with an approved centre. Studying with an
approved centre will deliver significant benefits.

Candidates are required to become a member of BCS, The Chartered Institute for IT, to sit and be awarded
the qualifications. Candidates may apply for a four-year student membership that will support them
throughout their studies.

The Level 4 Certificate is suitable for candidates new to the profession who are keen to develop industry-
relevant skills and knowledge, as well as professionals wishing to gain a formal IT qualification. Candidates
taking this module may be interested in career opportunities such as games or mobile app development,
database architecture or webmaster roles.

SFIA Levels
This award provides candidates with the level of knowledge highlighted within the table, enabling
candidates to develop the skills to operate successfully at the levels of responsibility indicated.

Level Levels of Knowledge Levels of Skill and Responsibility (SFIA)
K7 Set strategy, inspire and mobilise

K6 Evaluate Initiate and influence

K5 Synthesise Ensure and advise

K4 Analyse Enable

K3 Apply Apply

K2 Understand Assist

K1 Remember Follow

www.manaraa.com

5

Further detail around the SFIA Levels can be found at www.bcs.org/levels.

SFIA Plus
This syllabus has been linked to the SFIA
knowledge skills and behaviours required at Level

4.

ASUP2
Assists in the investigation and resolution of issues
relating to applications. Assists with specified
maintenance procedures.

ICPM2
Understands technical publication concepts, tools
and methods and the way in which these are used.
Uses agreed procedures to publish content. Obtains
and analyses usage data and presents it effectively.
Understands, and applies principles of usability and

accessibility to published information.

PROG2
Designs, codes, verifies, tests, documents, amends
and refactors simple programs/scripts. Applies
agreed standards and tools, to achieve a well-
engineered result. Reviews own work.

TEST2
Defines test conditions for given requirements.
Designs test cases and creates test scripts and
supporting data, working to the specifications
provided. Interprets, executes and records test
cases in accordance with project test plans.
Analyses and reports test activities and results.

Identifies and reports issues and risks.

HCEV3
Applies tools and methods to design and develop
users’ digital and off-line tasks, interactions
and interfaces to meet agreed usability and
accessibility requirements for selected system,
product or service components. Creates workable
prototypes. Assists, as part of a team, on overall
user experience design. Assists in the evaluation of
design options and trade-offs. Consistently applies
visual design and branding guidelines.

https://www.bcs.org/media/5165/sfia-levels-knowledge.pdf

www.manaraa.com

Learning Outcomes
Upon completion of this module, candidates will be able to:

• Distinguish between systems software and application software
• Understand the phases of software development
• Be able to develop and understand algorithms
• Be able to develop code from algorithms in a high-level programming language
• Be able to follow high level code and apply modifications to it
• Develop competence in the techniques of systematic problem analysis, program construction and

documentation
• Gain an understanding of the basic concepts of good user-interface design
• Understand and develop test strategies
• Understand the need for quality assurance/security in software development and its operation
• Gain an understanding of the principles of multiple module program construction
• Understand the need for compilers, interpreters, code generators
• Develop a knowledge and understanding of a range of fundamental algorithms

6

www.manaraa.com

7

Syllabus
1. Fundamental concepts of the Programming Process

Learners will be able to:

Explain the nature of information.1.1

1.2

Indicative content

a. Differentiate an algorithm

from a written specification.

Guidance

An algorithm describes the steps that must be taken to solve a
given problem that has to be translated into computer code. Coders
will generally employ patterns to determine the translation of an
algorithm design into actual code.

Design algorithms.

Indicative content

a. Decompose a problem into
a set of steps which may be
executed by a computer.

Guidance

Candidates should be able to break down a given practical situation
into smaller sections and continue to do this until the problem
can be expressed in terms of the control structures covered
in 1.3. Candidates should create an independent solution in a
programming language.

1.3 Develop code from an algorithm.

Indicative content

a. Produce code from an
algorithm developed from
the outcome of the process

described in 1.2.

Guidance

Candidates should be able to express sequence, selection, iteration
in their chosen programming language. For example, they should
be able to write if statements, case statements, while loops and for
loops; the way this is done will vary from language to language.

www.manaraa.com

8

Learners will be able to:

2.1 Explain programming paradigms.

Indicative content

a. For example:
• Modular/structured

programming
• Object oriented

programming
• Functional programming

Guidance

Candidates should be aware of various types of programming,
including modular programming, OOP and functional programming,
which are examples of current practices in software development.
Modular programming requires a program to be broken down into
individual modules rather than create a monolithic application
(where the smallest component is the whole), several smaller
modules are written separately so when they are composed
together, they construct the executable application program.
OOP associates data structures with the code that operates on it
and seeks to prevent programmers interacting with data other
than through pre-defined interfaces. Functional programming
represents every action as a function call. Most functional
languages use recursion instead of iteration.

2.2 Describe the objectives and principles of testing, derive test cases from a given specification.

Indicative content

a. Test-case specification
b. Testing and debugging

strategies including:
• Dry-running
• White-box
• Black-box

Guidance

Candidates will be expected to demonstrate an appreciation of the
importance of testing in the software development process. They
should be able to describe the terms dry-run, white-box testing and
black-box test. Given an algorithm or a piece of code, they should
be able to dry run the code or develop a set of inputs/outputs
suitable for a complete white or black box test.

2. Phase Specific issues of Software Development

1.4 Utilise pseudocode and flowcharts.

Indicative content

a. How these are used in the
creation of code in the design
phase

b. How these can be written in
different ways

c. Specific symbols for
flowcharts

Guidance

Pseudocode and flowcharts relate to the way in which algorithms
can be described. Both techniques are ways of representing
sequence, selection and iteration: pseudocode is textual, whereas
flowcharts are graphical.

www.manaraa.com

9

Discuss the need for software documentation and the nature of software documentation in a given
context.

2.3

2.4

Indicative content

a. Suitability of documentation
for a given context

b. Content of software
documentation such as
GUI descriptions and
maintenance details

Guidance

Candidates must appreciate the need to document code.
Such documentation will range from user manuals to in-line
comments in the code. They should be able to understand that the
documentation should be written with reference to its potential
user: an end-user will expect to see documentation which is
relevant to their use of the software, whereas a maintenance
programmer will require more technical details.

Describe mechanisms for assuring software quality and security within the software development
process.

Indicative content

a. ISO/IEC 25000
b. Quality models for software

product evaluation

Guidance

Software should be reliable, secure, efficient and maintainable.
Candidates should be able to define each of these terms and
describe basic mechanisms for achieving each characteristic, as
covered by the ISO/IEC 25000 standard.

2.5 Discuss a range of new or emerging software technologies.

Indicative content

a. For example:
• Parallel computing
• Quantum computing

Guidance

Candidates should be aware of alternatives to traditional software
development approaches covered elsewhere in this syllabus
associated with programming languages and programming
techniques. A general appreciation of current trends in software
development might include techniques to improve computation
speed, such as quantum computing or parallel programming.

www.manaraa.com

10

Learners will be able to:

Discuss the use of data types and type checking in programming languages.3.1

3.2

Indicative content

a. Numeric and non-numeric
b. Elementary and derived
c. Subtypes
d. Expressions such as:

• Assignments
• Input/output
• String handling
• Logical operators

Guidance

Candidates should be able to list basic types such as integer,
floating point, character, Boolean and string. They should also be
able to distinguish between weak typing, strong typing and type
inference. They should also have an elementary understanding
of derived types. They should be able to describe the relationship
between types and the operations permitted on those types.

Discuss the use of callable units in the development of code and write code examples which use
callable units.

Indicative content

a. Subroutines
b. Procedures
c. Functions

Guidance

Callable units allow the programmer to refer to blocks of
commonly-used code. Subroutines and procedures are essentially
identical, with ‘procedure’ being the more modern name for a
callable unit which does not return a value but may manipulate
global variables. Functions will return a value. Subroutines,
functions and procedures will accept zero or more parameters.
Calls to functions, subroutines and procedures may be call by value
or call by reference. Candidates are expected to be able to discuss
the difference between these two types of calls.

3.3 Explain the concept of a data structure and illustrate the explanation with reference to commonly
used data structures.

Indicative content

a. Arrays, lists and tuples
b. Implementation of queues,

stacks and collections
c. Concept of data abstraction

Guidance

Arrays, lists and tuples are data structures that are used to store
related sequences of data items that can be individually selected
using iteration statements. An item in an array and a list can be
changed or replaced. Arrays contain data of the same type. Stacks
and queues are also linear data structures with special built in
properties. Stack is a sequence of data that are inserted and
removed according to the last-in first-out (LIFO) principle. Queue
is a list of data items that are inserted and removed using a first-
in first-out (FIFO) principle. Data abstraction is the reduction of a
particular body of data to a simplified representation of the whole.

3. Introduction to Programming concepts

www.manaraa.com

11

Explain the advances in technology and impact of emerging trends in IS.3.4

Indicative content

a. Comparative effectiveness of
algorithms re. computation
and storage, e.g. bubble sort,
merge sort and quicksort

Guidance

These are different techniques for sorting an unordered set of
data contained in a list. The efficiency (also known as ‘the big O’) of
a particular sorting technique can be measured and depends on
various factors that candidates need to be aware of.

Learners will be able to:

Describe techniques for storing data in secondary storage.4.1

Indicative content

a. Creating, storing, and/or
retrieving the contents of a
file located on a secondary
storage device

b. Sequential, index-sequential
and random-access files

c. Text files
d. Semi-formatted files, e.g.

Comma Separated Value
(CSV) files

Guidance

Data consumed or output by a program needs to be permanently
stored and there are many ways this is achieved. In particular,
candidates will need to know how to write code to access files
of data held on a connected device (such as a memory card,
external hard drive). It is also important to be aware of how data
is structured to facilitate access to individual items of data or to
sequentially read the file using iteration.

4. Files

www.manaraa.com

12

Learners will be able to:

Discuss aspects of user interface design.5.1

Indicative content

a. User requirements and
characteristics of user
interfaces

b. Principles and techniques of
dialogue control, navigation
and selection

Guidance

An important part of user interface design is to gather what the
user requires from an application which the user wants developing.
This is usually manifested in the User interface which is where
the user is able to interact with the development of an application.
Therefore the design of the user interface needs to accommodate
the needs of users, but most importantly to provide access to
the underlying functionality of the software. Candidates need to
be aware of the basic principles such as Help and appropriate
dialogue control particularly when relaying information. ‘Keep it
simple, stupid’ (KISS) is a design principle stating that design of a UI
should be as simple as possible to guarantee the greatest levels of
user acceptance and interaction.

5. Discuss aspects of user interface design.

Learners will be able to:

Describe techniques for storing data in secondary storage.6.1

Indicative content

a. Fundamental utilities that
form the bulk of built-in
system software:
• Editors
• Debuggers
• Compilers
• Interpreters
• Linkers
• Loaders

b. Programming languages
requiring a virtual machine
environment to run (e.g. Java)

Guidance

System software is necessary to support the developer in many
different ways. All software is built on top of an operating system
and programs are built on top of compilers and interpreters linkers
supporting different programming languages. An understanding
of software utilities that support the development process such
as editors debuggers and Integrated development Environments
(IDEs) is important. Candidates are advised to gain this knowledge
from practical experience of using the system software
environment they use to write programs. More obvious system
software – such as operating systems or database management
systems, for example – are important, but candidates only need to
be aware of the role they have in supporting software development.

6. Role and need for system software

www.manaraa.com

13

Examination Format
This module is assessed through completion of an invigilated written exam.

Adjustments and/or additional time can be requested in line with the BCS reasonable adjustments policy
for candidates with a disability or other special considerations.

Type Two questions from Section A and five questions from Section B

Duration Two hours

Supervised Yes

Open Book No (no materials can be taken into the examination room)

Passmark 10/25 (40%)

Delivery Paper format only

Question Weighting
Section A and Section B each carry equal marks. Candidates are advised to spend about one hour on
Section A (30 minutes per question) and one hour on Section B (12 minutes per question).

Learners will be able to:

Develop a software solution to a real-world problem.7.1

Indicative content

a. Examine a software
application

b. Look at a case study or
scenario that describes the
problem and the functional
requirements

Guidance

This section is about giving candidates a chance to practise
examining a case study or a scenario. The case study or scenario
will set out a problem that candidates have not encountered before
and ask them to give a solution possibly using code or pseudocode,
i.e. a typical software development problem.

7. Case studies in problem solving/algorithm analysis

www.manaraa.com

14

Recommended Reading

Title: Grokking Algorithms

Author: A. Bhargava

Publiser: Manning Publications

Publisher Date: 2015

ISBN: 978-1617292231

Title: The Self-Taught Programmer

Author: C. Althoff

Publiser: Self-Taught Media

Publisher Date: 2017

ISBN: 978-0999685907

Primary texts

Title: Data Structures & Algorithms in Java (6th edition)

Author: M. Goodrich, R. Tamassia and M. Goldwasser

Publiser: Wiley

Publisher Date: 2014

ISBN: 978-118771334

Title: Java How to Program (11th edition)

Author: H. Deitel and P. Deitel

Publiser: Pearson

Publisher Date: 2018

ISBN: 978-9353062033

Additional texts
Java texts

www.manaraa.com

15

Title: Problem solving with C++ (10th edition)

Author: W. Savitch

Publiser: Pearson

Publisher Date: 2018

ISBN: 978-1292222820

Title: C How to program (8th edition)

Author: H. Deitel and P. Deitel

Publiser: Pearson

Publisher Date: 2016

ISBN: 978-0133976892

C/C++ texts

Title: Visual C# How to Program (6th edition)

Author: H. Deitel and P. Deitel

Publiser: Pearson

Publisher Date: 2017

ISBN: 978-1292153469

Title: C# in Depth (4th edition)

Author: J. Skeet

Publiser: Manning Publications

Publisher Date: 2019

ISBN: 978-1617294532

C# texts

Title: Introduction to Python for the Computer and Data Sciences

Author: H. Deitel and P. Deitel

Publiser: Pearson

Publisher Date: 2019

ISBN: 978-0135404676

Python texts

www.manaraa.com

Using BCS Books
Accredited Training Organisations may include excerpts from BCS books in the course materials. If you
wish to use excerpts from the books you will need a license from BCS. To request a license, please contact
the Head of Publishing at BCS outlining the material you wish to copy and its intended use.

Document Change History
Any changes made to the syllabus shall be clearly documented with a change history log. This shall include
the latest version number, date of the amendment and changes made. The purpose is to identify quickly
what changes have been made.

Version Number Changes Made
Version 1.0
July 2021

Document Creation

16

Title: Data Structures and Algorithms in Python

Author: M. Goodrich, R. Tamassia and M. Goldwasser

Publiser: Wiley

Publisher Date: 2016

ISBN: 978-8126562176

www.manaraa.com

Copyright © BCS 2021
[BCS Level 4 Certificate in IT Software Development] v1.0

For further information please contact:

BCS
The Chartered Institute for IT
3 Newbridge Square
Swindon
SN1 1BY

T +44 (0)1793 417 445

www.bcs.org

© 2021 Reserved. BCS, The Chartered Institute for IT

All rights reserved. No part of this material protected by this copyright may be reproduced or utilised in any form,
or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and
retrieval system without prior authorisation and credit to BCS, The Chartered Institute for IT.

Although BCS, The Chartered Institute for IT has used reasonable endeavours in compiling the document it does not
guarantee nor shall it be responsible for reliance upon the contents of the document and shall not be liable for any
false, inaccurate or incomplete information. Any reliance placed upon the contents by the reader is at the reader’s
sole risk and BCS, The Chartered Institute for IT shall not be liable for any consequences of such reliance.

CONTACT

